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Abstract

The problem of calculating the vibrations of rotating structures has challenged analysts since
the observation that use of traditional modal coordinates in such problems leads to the pre-
diction of instability involving infinite deformation when rotation rates exceed the first natural
frequency. Much recent published work on beams has shown that such predictions are artifacts
of incorporating incomplete kinematics into the analysis, but that work addresses analysis of
only simple structures such as individual beams and plates. The authors present a new approach
to analyzing rotating flexible structures that applies to the rotation of general linear (unjointed)
structures, using a system of nonlinearly coupled deformation modes. This technique is called
a Method of Quadratic Modes.
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1 Introduction

The literature discussing the difficulties of calculating the vibration of rotating struc-

tures is extensive (Ref. [1] through [29]). An illuminating comparison of various ap-

proaches is given by Ryan and Yoo [19]. Much of that discussion focuses on rotating

beams and on the inadequacy of the standard, simple extensions to multibody codes

designed for rigid structures to predict the behavior of flexible bodies. Those difficulties

have been identified as having to do with kinematics that are of only second order impor-
tance in non-rot sting problems, but that become of first order importance in problems

wit h significant angular velocities. These additional kinematics are also important where

there are external force fields present. These kinematics are usually “lost” in normal

linearization processes.

These “lost kinematics” are most easily illuminated in the case of a flexible but

inextensible beam fixed at one end and vibrating in a plane (See Figure 1). The beam is

assumed to be inextensible, so its lateral vibration must be accompanied by longitudinal

inward displacements. For small vibrations, if the lateral motions are of magnitude s,

these “foreshortening” displacements are of magnitude S2, and their associated kinetic

energies are of fourth order and don’t interfere with the lateral motions in ordinary
vibration problems. However, if there is a preexisting tension in the beam, e.g. due to

an external field such as gravity, the work associated with the foreshortening becomes of

order 92 and becomes an important factor in the coupled lateral vibration.

If the above beam were rotated about its hub, the longitudinal tension would cause

m

Figure 1. A deformed, rotating beam. The undeformed beam length is L, and the

current lateral deformation is Y(t).



centrifugal stiffening of lateral vibrations. Though the complicated vibrations of the

beam can be approximated by adding a posterior forces to the mechanics of a stationary

beam, this approach does not generate the kind of rigorous certainty that is expected in

modern mechanics and is necessary for quantitative prediction.

The equations for this example are developed below, where for simplicity, the beam

is taken to be massless but supporting a mass m at its end. We consider the hub to be

rotating with a specified angular velocity ~(t) and solve for the lateral displacement of
the tip mass Y(t) relative to a frame rotating with the hub. Since the beam is massless,

the lateral displacement of points on the beam between the hub and the end mass can

be expressed as the product of the static displacement shape and the displacement of the

end mass:

y(7’L, t) = f(7’)Y(t) (1)

where L is the original length of the beam, r ranges from O to 1, and f is a function

characteristic of the stiffness properties of the beam 1 and normalized so that f(1) = 1.

The axial displacement corresponding to that lateral motion is

AZ(t) = –a.Y(t)’/L

where

!11 ~f 2&.
~=

~ ~(~)

(Derivation of ~$ above expression for a employs the binomial expansion for

[1-(%-%)2] )

(2)

(3)

A direct application of the calculus of variations shows that the right hand side of

Equation 3 for a is minimized when ~(~) = ~ and that for all j(r), 2

1
a>–.

2

The position of the end-mass is:

z(t) = [L – aY(t)2/L] g,(t) + y(t)%(t) ,

(4)

(5)

where g.(t) is a unit vector tangent to the beam at the hub and ~(t) is a unit vector also
rotating with the hub, but oriented 90° counterclockwise from g,(t).

The velocity of the end-mass is:

~(t) = -Y(t){ #(t) + 2a ~(t)/L] }gr(t)

+{ i(t) [L – aY(t)2/L] + y(t) }%(t) (6)

1For a uniform cross section Euler-Bernoullibeam, f(r) = (3/2)r2(l – r/3).

zFor an ~uler-Bernoulli beam of uniform cross section! a = ~.
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In deriving the above equation, use has been made of the observations that

.
~T=eQ

and

Retaining at most quadratic terms in Y(t) and ~(t), the kinetic energy is:

KE = :m{e(t)’ [L’+ Y(t) ’(1 – Za)] + 2Y(t)@)L + Y(t)’}
,4

Expressing the spring stiffness of the beam 3 as

Using these expressions

erning equation of motion is

PE = +’(ty

IS, the strain energy is:

(7)

(8)

(9)

(lo)

for K?l and PI? in Lagrange’s equation, the following gov-

derived:

~y(t) + [m@2(2a – 1)+ K] Y(t) = –?nL6(t) (11)

Since a > ~, the term within the brackets in the above equation is always positive

and for any set of initial conditions, there exist bounded solutions to the differential

equation. Had the inward kinematics not been considered, the terms involving a would

not have been incorporated in the above equation and the solutions would have been.
unbounded for rotation rates II4 (1 > @. These non-physical, unbounded solutions
are sometimes sarcastically referred to as “buckling in tension”.

An important observation is that though foreshortening was introduced in the above

example problem through second order terms in Y(t), their impact is manifest through

a term in Equation 11 that is linear in Y(t): the resulting linear equation in Y cent sins
terms resulting from the nonlinear kinematics. A conclusion of the above calculation is
that the displacement field must be correct up to at least the second order in the primary

deformation [81 9].

Several approaches have been investigated recently for incorporating correct dynam-

ics into simple problems such as this. These methods include:

● Introducing a higher order strain measure in the evaluation of strain energy. The

strain measures employed in this approach are those that were devised in classical

finite elasticity to be insensitive to rigid body rotation[30, 31]. The higher order

3For an Euler-Bernoullibeam of uniform cross section, K= 3E1/L3.



strain may be used to evaluate strain energy associated with extension and that

strain energy is used in deriving the governing equations for the beam.

Linearization about the deformed kinematics results in equations which generate

the expected “stiffening”. This is the approach used by Simo and VU-QUOC[1O].

Reference [10] presents a very clear discussion of the nonlinearities associated with

the rotating beam and the rotating plate.

Detailed developments using finite strain measures are presented elsewhere by Simo
and VU-QUOC[ll, 12].

c A similar highorder strain is used to evaluate the stretch along the beam as it

curves. Incorporating the axial strain associated with the axial stretch as a field

in the governing equations results in deformed shapes having an appropriate “fore-

shortening”. This is, in effect, the approach used by Kane, Ryan, and Banerjee

[13].

. Liklns et. al [1] found steady state solutions about which to linearize oscillatory

solutions. They used a nonlinear strain measure to impose the appropriate kine-

matic constraints and employed the resulting membrane stresses as a preload on

the vibrations problem. Such an approach had earlier been pursued by Craig[2]

to study the vibrations of a rotating beam. A similar approach was employed by
Carrie et. al. [3] (later republished as [4]) and later employed by Lobitz [5, 6] in the

calculation of the vibrations of wind turbines. They used the nonlinear capabilities

of NASTRAN, includhg the generation of geometric stiffness matrices, to achieve

both the steady state configuration and the linearized stiffness matrix.

● La,Urenson[14] introduced geometric stiffness matrices to account for the effect of

the “preload” due to centrifugal accelerations. Lawrenson[15] later made a more

rigorous presentation of that approach. Zeiler and Buttril.1 [16] used geometric

stiffness matrices in connection with a finite element code to account for transient

angular velocity. Idler and Amirouche [171 developed equations of motion for cou-

pled flexible beam-like structures, using a geometric stiffness matrix to account for

the coupling between inertial terms and transverse deformations of the substruc-
tures. Banerjee and Dickens [18] recently implemented that approach again in the
context of finite elements.

. A nonlinear finite element routine accommodating the nonlinearities of the problem

through recalculation of mass and stiffness matrices at each time step maybe used.

An example of such a calculation is that of Peterson [21] using a commercial finite

element code. Christensen and Lee [22] used a nonlinear strain measure to derive a

finite element formulation which required recalculation of the stiffness matrix at each

time step. In this same spirit, Wu and Haug [23] employ a system of substructures,

the deformations of each substructure being defined with respect to its own locally

rotating frame.
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The literature on this topic is extensive and is outlined in references [24] and [25].

It is now clear that if linear techniques (such as modal superposition) can be used
in this intrinsically nonlinear problem, they can not be the standard techniques of linear
analysis. This is established by the observation that in general, the relevant nonlinear

kinematics can not be captured by combinations of the linear modes. Yet, a system

of generalized degrees of freedom is especially important in nonlinear problems since

nonlinear solutions are intrinsically expensive and reducing the degrees of freedom reduces
that expense. Further, assembling the full nonlinear systems o{ equations for a complete

finite element discretization at every time step is generally prohibitive.

It should also be noted that the above example problem was solved making use of

prior knowledge of exactly which constraint was active and of the nonlinear kinematics

necessary to satisfy that constraint. What is needed is a technique that will automatically

identify the relevant constraints and the kinematics necessary to satisfy those constraints.

2 A Method of Quadratic Modes

What is required is a technique employing a small number of generalized equations

that adequately account for the geometric nonlinear ities of these problems and does not

require the recalculation of stiffness matrices at every time step. It is also important

that such a method address general three-dimensional, linear structures, not

just simple beams or plates.

Such a technique is presented here. This approach is motivated by the need for a

rigorous (predictive) method to calculate the vibratory response of general structures, and
in a way that, does not require a priori knowledge of the “lost kinematics”. The essence

of the approach is to use information about the nonlinear static response of the structure

to define a space of configurations which, to second order, are consistent with kinematic

constraints such as those associated with “foreshortening”. (Those kinematics won’t

necessarily appear as ‘{foreshortening “ in more complex structures. ) These kinematics

are used with Hamilton’s principle to arrive at a relatively small system of governing

equations for the dynamics of the rotating, vibrating structure.

The necessary kinematics are introduced as functions of a basis of applied force
fields, The displacement field is expressed as a nonlinear operator of the applied force

field:

24 = N(F) (12)

where U is the displacement field resulting from the force field X and N is the nonlinear

mapping from F to U. The force field 3 consists of point forces, distributed surface

tractions, and distributed body forces.

The nonlinear operator N is expanded in a Taylor series which is truncated after



the quadratic term:

u = L(F)+ B(F,f-) (13)

where L is a linear operator and B is a bilinear operator. These operators are defined

in terms of Frech4t derivatives of the nonlinear operator N [32]. Numerical methods for

evaluating these operators is presented in a later section.

Next, a basis of force fields {3;} is considered:

where each field .Fi is time independent and where summation is performed on repeated

indices, as it is throughout the remainder of this paper. These serve as generators of the

nonlinear space of displacement configurations.

Substituting Equation 14 into Equation 13, the static displacement field is now:

U({si}) = 9iZ’fi+ S~SjQij (15)

where
Z4i = L(p) (16)

Since L7ijis the second Frech6t derivative of U with respect to each of ~ and Si, @ = Gii.

The above displacement fields are evaluated at individual particles x to yield:—

(18)

The fields Ui and gij are constant, as are their values at individual points, Xi(X) and

~i~(~). The symmetry of’ Gij in its indices Carries over to the symmetry of gi~yin its
indices. For convenience, the above will sometimes be represented by the notation

y(x, t)= Lq{%(q}>x)— (19)

Similarly, the imposed force fields can be evaluated at individual particles:

.f(X, t) = ‘i(t) ~(X) (20)—— ——

The displacement components Ui and ~i~ can be determined through limiting pro-

cesses involving N:
Ui = N(siFi) – N(–~i.Fi)

2.Si
+ 0(s:); (21)

(22)

12



(with no sum on the i), and

Gij= [N(9~Fi+ Sj.?’i)+ N( ‘Sip’ – Sj.FJ)

‘.N(9~F) – N(Sj.Fj) – N(–Si.F)– N(–9j.Tj)]/4SiSj

+O((19il + Isjl)’) (23)

with no sum on the i or j) for i # j.

Greater precision is achieved by evaluating N at more points

and

(25)

(with no sum on the i), and

(with no sum on the i or j) for j #i.

The above six equations are derived by truncating the Taylor series, evaluating that

truncated series at appropriate points, and formally solving for the coefficients of the

linear and quadratic terms. This process, which is equivalent to standard methods of
numerical differentiation [33], could be continued to achieve expressions for Z4i and gi~

of arbitrary order in si.

It is important to observe here that for all sets of coefficients {Si}, the resulting

displacement field does satisfy all kinematic constraints up to second order.

It is the {~i} which are next used as generalized degrees of freedom.

Appropriate bases of forces ~ may be selected to reflect either static or modal

loadings. The elastic modal deformations, along with resulting quadratic terms, are

introduced in the following manner:

1. Let ~“ be the n’th (linear) eigenmode, satisfying –p(~)w~yn(~) + DaY’’(z) = O

where there is no sum on n and D= is the associated spatial operator.

13



2. Define P = ll=~n

Static modes are introduced simply by defining the F“ to be the externally imposed loads

associated with those static modes.

Completeness of the basis force fields P is assured by requiring

linear displacement fields Z4i are complete in the corresponding linear

3 Governing Equations

3.1 Kinematics of a FlexiMe Body

that the resulting

space.

The position of a particle on a flexilde body undergoing large motions is represented

as the result of the successive application of deformation, rigid-body rotation, and rigid

body translation (See Figure 2):

a(x,~) = p(~)+ R(~)s[X+ U(ZJ)] (27)—

where x is the reference location of the given particle; U(X, t) is the displacement from

the ref~ence location at time t due to deformation u R is t~e rotation from the reference

configuration to the configuration at time i; and p(i) is the translation from the reference—
configuration to the configuration at time t. In component form, the above equation is:

~i(~,~) = pi(t) + Rij(t) [Xj + ‘j(~,t)] . (28)

Note that R(t) and p(t) are rotation and translation as seen in an inertial reference frame,—
so that ~ will be velocity as seen in that inertial reference frame.

In a frame that translates with p(t) and rotates along with R(t), the only displace-—
ments are E(X, t). Such “floating” frames have been discussed in detail in the literature

[26, 27, 28]. ‘In particular Reference [29] contains a recent discussion on the relative

advantages of defining p and R to be either the translation of the center of mass and—
the rotation of the principle axes of inertia, or the
particle on the body.

The development of the equations of motion

kinematic relations:
dRn R—= .
dt ?

and

6R=A. R

translation and rotation of a specific

requires the following easily-verified

(29)

(30)

where $_2is the spin tensor corresponding to the angular velocity g at the current time,

and A is the tensor of virtual rotations about the current configurations,

14



2J=X —

R .&, t)

9

R-x —

o

x + !@, q—
R’“!@, t)

QR-x —

Ol?

Figure 2. The configuration at time t is the net result of deformation, rotation, and

translation.



The spin tensor is related to the angular velocity vector through the alternation

tensor e:
1

wi = ‘– ~ijk~jk y
2

(31)

and the tensor of virtual rotations is similarly related to a corresponding vector of virtual
rot ations:

Equations 29 and 30

in terms of vector/tensor

for the time derivative and variation of R can be restated now

operators:

dR
—=~x R,
dt

(33)

and

6R=~x R. (34)

Using the above relations, one obtains the following expressions for velocity, accel-

eration, and virtual displacement of the particle originally located at x:—

+ R.ti(y, t) ; (35)

+ 2fl . R“z + R&, t) ; (36)

k(x, t) = !i+ A x {R. [x+E(ZW]}+ RwJW@) .— (37)—

The above expressions will be made slightly longer with the employment of the

earlier expression for g:

ZL(x, t) = g({~i(t)}>~) (38)—

so &t, & , and & have simple forms:

~ = ~bi = bi~i + 2&9iSjgi];
i

8U . ..‘ii =~i~’+2~isjg’J;
2 = ilsi —

and

(39)

(40)

(41)

16



3.2 Hamilton’s Principle

The extended Hamilton’s principle [34] asserts that the first variation of the time

integral of the Lagrangian of a mechanical system plus the variation of the work of
external forces is made stationary by the equations of motion of that system. In the

context of this elastic system, and ignoring initial and terminal conditions:

o=
!

‘2 [NW – 6SE+6XE]fit (42)
t~

where KE is the kinetic energy; SE is strain energy; and 6AW the virtual work of ext ernal

forces. Hamilton’s principle asserts that the integral on the right hand side of the above

equation must be stationary with respect to all independent kinematic variables.

The kinetic energy is

KE=~
!

~ ~ J@) ii(z) t) “MM ~) Wz)
v

The variation of kinetic energy in Hamilton’s principle is:

(43)

(44)

On integration by parts

placement, this becomes:

to resolve out variations in velocity for variations in dis-

ta=J! –I@)M&~)“E(xj~)w@ (45)
tl Vol

This integration by parts may also be performed through the more laborious process of

first expanding @ and &as in Equations 35 and 37 and performing integrations-by-parts
as necessary to remove variations in rate terms. This second approach requires use of
the lemma proven in Appendix I.

The strain energy is:

SE= ;Q(Z4,Z4) (46)

where U is the whole field of displacements U(X, t) with respect to the initial configuration—
and Q is a quadratic operator characteristic of the structure. The variation in strain

energy is:

I

tz

I

tz

6SE dt = Q(&!A,U)dt (47)
tl tl

17



The above is a linear operator on 24 and may be written as an inner product:4

!
tz t~

6SE dt =
H

&&t) . ~8(U)(x, t) W(x) dt
t~ tl

— —
Vol

(48)

where F’~(Z4)(X, t) is the distributed force field in the vicinity of x associated with the— —
static displacement field U; IIS(Z4)(X, t) is the field of reaction force; due to 2-4. To within— —
the linear response of the structure,

F~(U)(x, t) = S;(t)f’(x) (49)
— — ——

The variation in external work is:

where tk(x, t) is the virtual displacement with respect to the inertial frame and FX(X, i!)

is the dist~lbuted externally applied force field in the vicinity of X.
—_

—

Combining the constituent terms into the integral of Hamilton’s principle, we obtain:

o= H‘2 {k(x,~). [-dx)i(x,q + ~x(x!d]
t~ —— —.

Vol —

–ti&t) . F@)(x,t) } W(z) dt— — (51)

The above integral must hold for all &(x, t), generating the following conditions,
one for each component of &, that must hold ~t all times t1 < i < tz:

o= /[ 6p. –P(x) i(& ~) + ~x(x>~)]dw)
Vol —

o=
/ (Ax {R”[x+ U(xm)” [-P(X)Z(X,~)+ Mxw] dv(x)— — ——
Vol

—

O=tki
!

(R. g) “ [-P(x)& + Y&t) - W4(XA] dv(x)— —
Uol

—
t

(52)

(53)

(54)

Since $p, & and hi are all arbitrary, their coefficients must each be zero. Note that

there are ex~ctly as many equations as there are acceleration terms: three scalar equations

associated with p for the three components of ~; three scalar equations associated with

~ for the three i~dependent components of ~; a~d one equation associated with each &i

for the corresponding ~i.

4The justification for this representationlies with the famous theorem of F. Reisz. A simple discussion
is found in Reference [36].
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The above equations may be mapped from the inertial frame to a frame coincident

with the original configuration. This new frame may be seen as a co-rotating frame.

Letting:

the equations of motion for the body become:

0=(5$.—/[ –I@ $(Z,~)+ ~x(x?~)]Wx)
Vol

o= /[ ($x X+ ‘4i(X)] )“[-P(X) i(X,’) + &(X, t)]‘V(X)— — — — — —
Vol

O=t%i /[ yi(x)+ zsj~ij(~)] “ [–~(~)i+~X(X, ‘) – ‘.(”) (X!‘)]‘v(~)
Vol —

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Evaluation of these integrals requires evaluation of the individual terms in ~:
.

~ = $ + (fi + fi2) “ (X + si~i(~)) + 2ti “ ~i~i(~) + ~&i(~) (66)— —

The acceleration terms to be determined by the above equations are: ~, ~, and ;i.—

Equations 63 and 64 are exactly the equations for translation and rotation that

would have been obtained without consideration of geometric nonlinearities. It is in the

term 2sjgij(X) in Equation 65 that the geometric nonlinearity is manifest. Note that. —
all terms of order greater than one in the Si have been dropped from the expression for

acceleration. Linearization at this stage yields different equations for deformation than

would have been obtained without consideration of the nonlinear kinematics.

The integrals

.JV.l29j9’j(X)@V(X),— — —

J , %jgij(x)(h + h’) “ x~v(x),uO __ ——

19



in Equation 65 are all associated with geometric stiffness matrices [35]. The matrices
generated by these integrals differ from the ordinary geometric stiffness matrices in that

they are defined with respect to the generalized degrees of freedom ~i rather than with

respect to nodal degrees of freedom.

It is shown in a later section how all of the time varying terms in Equations 63,64,

and 65 can be factored outside the above volume integrals, in a manner which permits

exploitation of a finite element code to perform the integrations over the body.

4 Some Simple Examples

● A rnassless rotating beam with end mass:

Returning to the problem of Figure 1, where the reference point at the hub is fixed

and the angular velocity at the hub is specified, Equations 63 and 64 are satisfied
automatically. The deformations with respect to the local frame are obtained by

fixing R and p (in this case, fixing the hub) and imposing a lateral load equal to

S1IGLat the t[p of the beam.

The resulting displacements define the fields MI and gll. These fields can be ob-

tained by setting Y = SL in Equation 5 and identifyil.g appropriate coefllcients of

powers of s. The density in the integrand of Equation 65 is a Dirac delta function

at x = L. The relevant terms in the integrand are evaluated at that location and—
expressed as column vectors:.

{}

L
XL= *

{}

o
?& =

L

{}

—crL
g:= o

{}

o+=
— o

Tile angular velocity tensor is represented by the matrix:

[s5]=[;-j]

(67)

(68)

(69)

(70)

(71)

Suhstit ution of these terms into Equation 65, and then linearizing with respect to

S1 yields the anticipated equation (Equation 11)for iil.

20



Figure 3. Abeam first accelerated linearly tocause axial compression and then
accelerated to cause tension.

● A linearly accelerating beam:

Another interesting example is where the hub in the above problem is prevented

from rotating, but is instead caused to move toward the right at a specified accel-

eration (see Figure 3). Set ting

and

[fi]= [::]

$.

{}

p= ; ,
—

(72)

(73)

substituting these terms and Equations 68 and 69 into Equation 65, and linearizing

with respect to S1 yields the following equation for gl:

m;l + (K – 2cxa)i31 = O (74)

This equation has the interesting
of the hub will lower the natural

ramification that accelerating the mass ahead
frequency while accelerating the hub ahead of

the mass will raise the natural frequency. Though these conclusions could also

have been obtained through consideration of the level of tension in the beam, the

formulation presented here does not require any consideration of that tension at

all.

● The beam spin-up maneuver:

Here we consider a uniform beam accelerated about its hub up to an angular veloc-

ity, VT, well above its first natural cantilevered frequency. The hub angular velocity

is imposed as:

e(t) = VT
27rt – P siIl(27rt/P)

27rP
(75)
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I Problem Parameters I
Parameter

Bending Stiffness ~

Beam Length
Mass/Length

Nominal Frequency

Final Angular Velocity
Acceleration Period

Table 1. Beam parameters for the pr~

Symbol Value

131 1.4x 104
L 10

G = ~h” ;:;666

VT 6.0
P 15.0

blem of a beam accelerated about its hub.

for t < P, and

6(t) = VT (76)

for P < t.

This is a problem examined by Kane et.al.[13] and by Simo[lO] [12]. For simplicity,

the beam is treated as inextensiMe. The specifications for the beam and the hub

acceleration are presented in Table 4. The parameters of the beam can be combined

into a characteristic frequency:

(.2= Jw- (77)

In this problem of planar dynamics, much of the complexity of Equations 63, 64,

and 65 simplifies away. Choosing the hub as the reference point results in ~ being—
identically zero. Further, the specification of angular velocity at the hub results in

the variation, & also being identically zero. Equations 63 and 64 are identically

satisfied, leaving only Equation 65 to address. Further simplification results from
the observation that lateral force fields acting on the beam result in lateral dis-

placements that are proportional to the force field and axial displacements that are

quadratic in the force field.

To simplify the numerics of this problem, dimensionless coordinates, forces and
displacements are introduced. Position along the beam is CL where O < ( < 1 and
L is the length of the beam, The laterally applied force per unit length on the

beam is

FJ(L) = (E1/L3) ~ %fk((}j (78)

where EI is the bending modulus of the beam, and the resulting displacement is

(79)

where {~k(()~} is the basis of dimensionless lateral force fields. The linear displace-—
ments satisfy the beam equation:

(80)

22



Since hub rotation is specified, zero-slope and zero-displacement conditions are
imposed at ~ = O (z = O) in the above differential equation. Natural boundary

conditions hold at [ = 1 (z = L).

The quadratic terms derive from the condition of zero axial strain. The position of

particle ~ is represented in the unrotated system as:

~(~) = (C + ‘isj9ij(C))~ + $I&k (81)

The axial strain is
~z _l

c= q
(82)

and the condition that Cz= O becomes:

;9kf([) = ‘;$~k(t) ;“~(t) (83)

On substitution of these terms into Equation 65, the following system of equations

In the above,

and

J
1

Ck =
~k(O@(”

o

In the example below, calculations were performed
polynomials:

f’(() = (k-’

for k=l,2,3.

The resulting lateral displacements are:

S/ = ‘tick (84)

(85)

(86)

(87)

(88)

using a force basis of three

(89)

U*(() = (4/24 – ~3/6 + ~2/4

U2(<) = (s/120 – (3/12 + <2/6

~3(() = (6/360 – (3/18 + (2/8

(90)

(91)

(92)
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The six independent g~ 1(~) can also be calculated in closed form, but they are too

complex to be enlightening, and are not presented here.

When the integrals are performed to evaluate the matrices of Equation 84, the

following result is obtained:

(M/c,)=

0.004012 0.002914 0.002282

0.002914 0.002117 0.001658

\ 0.002282 0.001658 0.001298

(93)

(0.050000 0.036111 0.028175

(~kl)= 0.036111 0.026190 0.020486 \ (94)

[0.028175 0.020486 0.016049 ~

(N,,)=
–0.002353 –0.00172 –0.001351

–0.001720 –12.57 .10-4 –9.879 .10-4

\ –0.001351 –9.879.10-4 –7.764.10-4

()

0.03611
(Ck)= 0.02619

0.02049

(95)

(96)

For the purpose of illustration, Equation 84 was solved using a Newmark beta

met hod. The resulting dimensionless tip displacement, as seen in a frame rot sting

with the hub, is shown in Figure 4. Also shown are the curves resulting when
only one basis force (k = 1) and two basis forces (k = 1 and k = 2) are used.

The relevant matrices for these lower order approximations are submatrices of the

matrices shown above. The three curves are in very good agreement with each

other and with the calculations of Simo[lO]. Significantly, these calculations were

performed using far fewer degrees of freedom than are necessary in other approaches

[10, 13].

If one employs as basis force fields the force fields associated with the eigenmodes,
even better results are achieved. Figure 4 also shows the dimensionless tip displac-

ement calculated using the force field associated with the first cantilever eigenmode

[37]. This plot is especially significant since its calculations involved solving differ-

ential equations for only one degree of freedom.

5 Conclusion

Presented above is a method for analyzing general rotating flexible elastic struc-

tures. This method permits the use of a reduced number of degrees of freedom while still

accommodating the appropriate nordinearities of the problem. The nonlinear structural
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Dimetioriless Tip Deflection 1,2, & 3 DOF
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Figure 4. Dimensionless tip displacement as seen in a frame rot sting with the hub.

Calculations involved force basis sets of one, two, and three polynomial

terms.
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Figure 5. Dimensionless tip displacement as seen in a frame rotating with the hub.

Calculations involved a basis of one eigenforce.
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analysis required in this method, calculation of the displacement vectors Ui and gij associ-

ated with force fields fi’, occurs prior to the actual dynamics calculations. Nonlinearities

that remain in the calculations are no more than those associated with the corresponding

rigid body problem.

Though the applications presented in this report were selected to be simple enough

to be illuminating, more complex applications include:

● multi-flexible-body dynamics

Though the method presented here is developed for a single, (but generaz,) rotating,

flexible structure, this approach can be applied to each of several jointed structures

and linked by imposition of appropriate sets of mutual constraints.

● use of commercial finite element code.

The structural calculations of this method can be performed using an existing finite
element code in the following manner:

1.Select basis forces. These basis forces are in general a combination of externally

applied loads and eigenforces. The eigenforces are calculated as ~ = [M] di

where & is an eigenmode and [lkf] is the mass matrix. Direct access to the

mass matrix is not actually necessary; one temporarily sets all stiffnesses to

zero and calculates the reaction forces which result from accelerating all nodes

according to &.

2. Evaluate the linear and quadratic modes associated with above basis of forces,

These are calculated in the manner in Section 2.

3.Calculation of necessary volume integrals of Equations 63, 64, and 65 is

achieved by calculating all permut ations of [ill] [ok] Ui, [~] [fl~] gi~, and [M] [ok] X.

In the above, the nine constant tensors [ok] are a basis for the second order

tensors.

4.Calculate the inner products of Equations 63, 64, and 65. This involves the
contraction of vectors each as long as the number of degrees of freedom of the

finite element model.

5.Solve the reduced system of N+6 differential equations in N+6 unknowns

where N is number of original basis forces employed. The resulting accelera-

tions, p, h , and ~i, are used to update the velocity terms, p, S2, and ii and—
to update the kinematic and deformation terms, p, R, and ~i.—

Such an implementation of a finite element code to do the tedious structural calcu-

lations prior to the dynamics calculations has been performed. Among calculations

performed using this code were those of a flexible orbiting body, in which modal
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damping of the flexible degrees of freedom served to increase the coning angle of the

overall body. That numerical implementation will be the topic of a future report.
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Appendix A. A Lemma on the integration of&l

If T solves the equation

~ = II(t) .T(t) (Al)

subject to T(0) = I and II being antisymmetric, and if Ml is defined by

817= W*T (A.2)

then

= = m + 11.m? + (!N?.IF
a!

(A.3)

Proof:

Subtracting $ (Equation Al) from & (Equation A.2) and post multiplying by T-l,

the following is obtahled:

(A.4)

Using Equations A. 1 and A.2 to resolve out &I’ and t3T/t%! from the above equation

results in Equation A.3.

An Application:

Letting R(t) be the rotation tensor defined by

(A.5)

and R(0) = I where fl(t) is the angular velocity tensor at time t, and defining the

incremental rotation tensor A by

Ill = 6A*R (A.6)

the following equation is derived for the time derivative of variation in angular velocity:

(A.7)

The above expression is used in the integration by parts of the kinetic energy term

in the action integral of Hamilton’s principle.
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